467 research outputs found

    Probabilistic Logic Programming with Beta-Distributed Random Variables

    Full text link
    We enable aProbLog---a probabilistic logical programming approach---to reason in presence of uncertain probabilities represented as Beta-distributed random variables. We achieve the same performance of state-of-the-art algorithms for highly specified and engineered domains, while simultaneously we maintain the flexibility offered by aProbLog in handling complex relational domains. Our motivation is that faithfully capturing the distribution of probabilities is necessary to compute an expected utility for effective decision making under uncertainty: unfortunately, these probability distributions can be highly uncertain due to sparse data. To understand and accurately manipulate such probability distributions we need a well-defined theoretical framework that is provided by the Beta distribution, which specifies a distribution of probabilities representing all the possible values of a probability when the exact value is unknown.Comment: Accepted for presentation at AAAI 201

    Context-dependent Trust Decisions with Subjective Logic

    Full text link
    A decision procedure implemented over a computational trust mechanism aims to allow for decisions to be made regarding whether some entity or information should be trusted. As recognised in the literature, trust is contextual, and we describe how such a context often translates into a confidence level which should be used to modify an underlying trust value. J{\o}sang's Subjective Logic has long been used in the trust domain, and we show that its operators are insufficient to address this problem. We therefore provide a decision-making approach about trust which also considers the notion of confidence (based on context) through the introduction of a new operator. In particular, we introduce general requirements that must be respected when combining trustworthiness and confidence degree, and demonstrate the soundness of our new operator with respect to these properties.Comment: 19 pages, 4 figures, technical report of the University of Aberdeen (preprint version

    A general approach to reasoning with probabilities

    Get PDF
    We propose a general scheme for adding probabilistic reasoning capabilities to a wide variety of knowledge representation formalisms and we study its properties. Syntactically, we consider adding probabilities to the formulas of a given base logic. Semantically, we define a probability distribution over the subsets of a knowledge base by taking the probabilities of the formulas into account accordingly. This gives rise to a probabilistic entailment relation that can be used for uncertain reasoning. Our approach is a generalisation of many concrete probabilistic enrichments of existing approaches, such as ProbLog (an approach to probabilistic logic programming) and the constellation approach to abstract argumentation. We analyse general properties of our approach and provide some insights into novel instantiations that have not been investigated yet

    Assessing the Robustness of Intelligence-Driven Reinforcement Learning

    Full text link
    Robustness to noise is of utmost importance in reinforcement learning systems, particularly in military contexts where high stakes and uncertain environments prevail. Noise and uncertainty are inherent features of military operations, arising from factors such as incomplete information, adversarial actions, or unpredictable battlefield conditions. In RL, noise can critically impact decision-making, mission success, and the safety of personnel. Reward machines offer a powerful tool to express complex reward structures in RL tasks, enabling the design of tailored reinforcement signals that align with mission objectives. This paper considers the problem of the robustness of intelligence-driven reinforcement learning based on reward machines. The preliminary results presented suggest the need for further research in evidential reasoning and learning to harden current state-of-the-art reinforcement learning approaches before being mission-critical-ready.Comment: Accepted for publication at IEEE TechDefense 202

    Proposed Amicus Curiae observations for the Karadžić Judgment

    Get PDF
    corecore